Algorithm 9.6 Rule splitting algorithm

The rules ρ_3 on the one hand, and ρ_7, ρ_8 on the other, have compatible contexts, so we can choose to combine them. We begin by splitting ρ_3 and ρ_7 on each other's context, which results in:

$$\left\{ \begin{array}{ll} \rho_{15} & \langle a^0, b^1, d^0, e^0; 1 - q_2 \rangle \\ \rho_{16} & \langle a^0, b^1, d^0, e^1; 1 - q_2 \rangle \\ \\ \rho_{17} & \langle a^0, b^0, d^0, e^0; 1 - p_1 \rangle \\ \rho_{18} & \langle a^0, b^1, d^0, e^0; 1 - p_1 \rangle \end{array} \right\}$$

The contexts of ρ_{15} and ρ_{18} match, so we can now apply rule product, replacing the pair by:

$$\{ \rho_{19} \ \langle a^0, b^1, d^0, e^0; (1-q_2)(1-p_1) \rangle \}$$

We can now split ρ_8 using the context of ρ_{16} and multiply the matching rules together, obtaining

$$\left\{ \begin{array}{ll} \rho_{20} & \langle a^0, b^0, d^0, e^1; p_1 \rangle \\ \rho_{21} & \langle a^0, b^1, d^0, e^1; (1-q_2) p_1 \rangle \end{array} \right\}.$$

The resulting rule set contains ρ_{17} , ρ_{19} , ρ_{20} , ρ_{21} in place of ρ_3 , ρ_7 , ρ_8 .

We can apply a similar process to ρ_4 and ρ_9 , ρ_{10} , which leads to their substitution by the rule set:

$$\left\{ \begin{array}{ll} \rho_{22} & \langle a^0, b^0, d^1, e^0; 1-p_2 \rangle \\ \rho_{23} & \langle a^0, b^1, d^1, e^0; q_2(1-p_2) \rangle \\ \rho_{24} & \langle a^0, b^0, d^1, e^1; p_2 \rangle \\ \rho_{25} & \langle a^0, b^1, d^1, e^1; q_2 p_2 \rangle \end{array} \right\}.$$

We can now eliminate D in the context a^0, b^1, e^1 . The only rules in \mathbb{R}^+ compatible with this context are ρ_{21} and ρ_{25} . We extract them from \mathbb{R}^+ and sum them; the resulting rule $\langle a^0, b^1, e^1; (1-q_2)p_1+q_2p_2 \rangle$, is then inserted into \mathbb{R}^- . We can similarly eliminate D in the context a^0, b^1, e^0 .

The process continues, with rules being split and multiplied. When D has been eliminated in a set of mutually exclusive and exhaustive contexts, then we have exhausted all rules involving D; at this point, \mathcal{R}^+ is empty, and the process of eliminating D terminates.