332 Chapter 9. Variable Elimination

Algorithm 9.6 Rule splitting algorithm

Procedure Rule-Split (
p = {c;p), Il Rule to be split
¢’ I/ Context to split on
)
if ¢ # ¢’ then return p
if Scope|c] C Scope[c’] then return p
Select Y € Scope|c'] — Scope[c]
R — Split(pLY)
R’ — Uprer Rule-Split(p”, ')
return R’

S Gl W N

The rules p3 on the one hand, and pr, ps on the other, have compatible contexts, so we can
choose to combine them. We begin by splitting ps and p; on each other’s context, which results in:

P15 <a0ab17d0760;1 _q2>
P16 <a07b17d0761§1—QQ>

P17 <a07b07d0560;1_p1>
P18 <a07b17d0760;1_p1>

The contexts of p15 and pl8 match, so we can now apply rule product, replacing the pair by:
{ P19 <a0ab17d0760;(1_q2)(1_p1)> }
We can now split ps using the context of p1g and multiply the matching rules together, obtaining

{ P20 <a07b0ad0761;p1> }
par (a0, d% e (1 = qo)p1) |-

The resulting rule set contains p17, p19, P20, p21 in place of ps, pz, ps.
We can apply a similar process to py and pg, p1o, which leads to their substitution by the rule
set:

P22 <a07b0ad1760;1_p2>
P23 <a07b17d1560;q2(1 _p2)>
P24 <a0,b0,d1,€1;p2>

P25 (a% 0", d", e'; qopa)

We can now eliminate D in the context a®,b',el. The only rules in R™ compatible with
this context are py1 and pss. We extract them from R™ and sum them; the resulting rule
(a®, b, et; (1 — go)p1 + qape), is then inserted into R~. We can similarly eliminate D in the
context a®, b, €°.

The process continues, with rules being split and multiplied. When D has been eliminated in a
set of mutually exclusive and exhaustive contexts, then we have exhausted all rules involving D; at
this point, R is empty, and the process of eliminating D terminates. L]



