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Algorithm A.11 Conjugate gradient ascent

Procedure Conjugate-Gradient-Ascent (

θ1, // Initial starting point

fobj, // Function to be optimized

δ // Convergence threshold

)

1 t← 1
2 g0 ← 1

3 h0 ← 0

4 do

5 gt ← ∇fobj(θ
t)

6 γt ← (gt
−g

t−1)T
g

t

(gt−1)T gt−1

7 ht ← gt + γtht−1

8 Choose ηt by line search along the line θt + ηht

9 θt+1 ← θt + ηtht

10 t← t + 1
11 while ‖θt − θt−1‖ > δ
12 return (θt)

A.5.3 Constrained Optimization

In appendix A.5.1, we considered the problem of optimizing a continuous function over its entire

domain (see also appendix A.5.2). In many cases, however, we have certain constraints that the

desired solution must satisfy. Thus, we have to optimize the function within a constrained space.

We now review some basic methods that address this problem of constrained optimization.constrained
optimization

Example A.5
Suppose we want to find the maximum entropy distribution over a variable X , with Val(X) =
{x1, . . . , xK}. Consider the entropy of X :

IH(X) = −
K∑

k=1

P (xk) log P (xk).

We can maximize this function using the gradient method by treating each P (xk) as a separate

parameter θk . We compute the gradient of IHP (X) with respect to each of these parameters:

∂

∂θk

IH(X) = − log(θk)− 1.

Setting this partial derivative to 0, we get that log(θk) = −1, and thus θk = 1/2. This solution

seems fine until we realize that the numbers do not sum up to 1, and hence our solution does not

define a probability distribution!

The flaw in our analysis is that we want to maximize the entropy subject to a constraint on

the parameters, namely,
∑

k
θk = 1. In addition, we also remember that we need to require that

θk ≥ 0. In this case we see that the gradient drives the solution away from from 0 (− log(θk)→∞
as θk → 0), and thus we do not need to enforce this constraint actively.


