
1114 Chapter 23. Structured Decision Problems

Algorithm 23.3 Iterated optimization for influence diagrams with acyclic relevance graphs

Procedure Iterated-Optimization-for-IDs (

I , // Influence diagram

G // Acyclic relevance graph for I

)

1 Let D1, . . . , Dk be an ordering of D that is a topological ordering for G

2 Let σ0 be some fully mixed strategy for I

3 for i = 1, . . . , k

4 Choose δDi
to be locally optimal for σi−1

5 σi ← (σi−1

−Di
, δDi

)

6 return σk
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Figure 23.9 Clique tree for the imperfect-recall influence diagram of figure 23.5. Although the

network has many cascaded decisions, our ability to “forget” previous decisions allows us to solve the

problem using a bounded tree-width clique tree.

are already stable, and so will never need to change; for j > i, the decision rules for Dj are

irrelevant, so that changing them will not require revisiting Di.

One subtlety with this argument relates, once again, to the issue of probability-zero events. If

our arbitrary starting strategy σ assigns probability zero to a certain decision d ∈ Val(D) (in

some setting), then the local optimization of another decision rule D′ might end up selecting a

suboptimal decision for the zero probability cases. If subsequently, when optimizing the decision

rule for D, we ascribe nonzero probability to D = d, our overall strategy will not be optimal.

To avoid this problem, we can use as our starting point any fully mixed strategy σ. One obvious

choice is simply the strategy that, at each decision D and for each assignment to PaD , selects

uniformly at random between all of the possible values of D.

The overall algorithm is shown in algorithm 23.3.

Theorem 23.5 Applying Iterated-Optimization-for-IDs on an influence diagram I whose relevance graph is acyclic,

returns a globally optimal strategy for I .

The proof is not difficult and is left as an exercise (exercise 23.8).

Thus, this algorithm, by iteratively optimizing individual decision rules, finds a globally optimal

solution. The algorithm applies to any influence diagram whose relevance graph is acyclic, and

hence to any influence diagrams satisfying the perfect recall assumption. Hence, it is at least as

general as the variable elimination algorithm of section 23.3. However, as we saw, some influence

diagrams that violate the perfect recall assumption have acyclic relevance graphs nonetheless;

this algorithm also applies to such cases.

Example 23.22 Consider again the influence diagram of example 23.11. Despite the lack of perfect recall in this


